Abstract

The present study demonstrates that serotonin (5-hydroxytryptamine, 5-HT)-containing axons project to two sets of neurons in the dorsolateral pons that have been implicated in salt appetite regulation. These two neuronal groups are the pre-locus coeruleus (pre-LC) and a region in the parabrachial nucleus termed the external lateral-inner subdivision (PBel-inner). Neurons in both regions constitutively express the transcription factor Forkhead protein2 (FoxP2), and become c-Fos activated after prolonged sodium depletion. They send extensive projections to the midbrain and forebrain, including a strong projection to the ventral tegmental area (VTA)-a reward processing site. The retrograde neuronal tracer cholera toxin β-subunit (CTb) was injected into the VTA region; this was done to label the cell bodies of the pre-LC and PBel-inner neurons. After 1 week, the rats were killed and their brainstems processed by a triple-color immunofluorescence procedure. The purpose was to determine whether the CTb-labeled pre-LC and PBel-inner neurons, which also had FoxP2 immunoreactive nuclei, received close contacts from 5-HT axons. Neurons with these properties were found in both sites. Since the origin of this 5-HT input was unknown, a second set of experiments was carried out in which CTb was injected into the pre-LC or lateral PB. One week later, the rats were perfused and the brainstems from these animals were analyzed for the presence of neurons that co-contained CTb and tryptophan hydroxylase (synthetic enzyme for 5-HT) immunoreactivity. Co-labeled neurons were found mainly in the area postrema and to a lesser degree, in the dorsal raphe nucleus. We propose that the 5-HT inputs to the pre-LC and PBel-inner may modulate the salt appetite-related functions that influence the reward system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call