Abstract
The alpha(2)-adrenoceptor antagonists potentiate both ipsilateral and contralateral rotations induced by amphetamine and apomorphine respectively in hemiparkinsonian rats. The present study investigated the role of serotonergic transmission in this potentiation in unilaterally 6-hydroxydopamine nigral lesioned rats. D-amphetamine (0.5 mg/kg, i.p.) produced ipsilateral rotations, which were decreased by the dopamine receptor antagonist haloperidol (0.2 mg/kg, i.p.) and the alpha(1)-receptor antagonist prazosin (1 mg/kg, i.p.). The selective alpha(2)-antagonist 2-methoxy idazoxan (0.2 mg/kg, i.p.) potentiated the amphetamine-induced ipsilateral rotations, that were attenuated by haloperidol and prazosin. The selective serotonin re-uptake inhibitor citalopram (10 mg/kg, i.p.) and selective serotonin synthesis inhibitor p-chlorophenylalanine (150 mg/kg, i.p., 3 days) decreased and increased the observed potentiation respectively. Apomorphine (0.2 mg/kg, s.c.) produced contralateral rotations, which were decreased by haloperidol but not by prazosin. 2-methoxy idazoxan potentiated these rotations which were attenuated by haloperidol but not by prazosin. Citalopram and p-chlorophenylalanine increased and decreased the observed potentiation respectively. Citalopram and p-chlorophenylalanine had no effect by per se on D-amphetamine and apomorphine-induced rotations. 2-methoxy idazoxan alone increased both ipsilateral and contralateral spontaneous rotations. Taken together, these findings indicate that an increase in noradrenergic tone by 2-methoxy idazoxan potentiates both D-amphetamine-induced ipsilateral and apomorphine induced contralateral rotations. alpha(1)-Antagonism attenuates D-amphetamine induced ipsilateral rotations and its potentiation by 2-methoxy idazoxan but not apomorphine rotations or its potentiation. Increasing and decreasing the serotonergic transmission decreases and increases D-amphetamine potentiation, whereas increases and decreases apomorphine potentiation respectively. The possible mechanisms for these findings are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.