Abstract

Seizure predisposition in Genetically Epilepsy-Prone Rats (GEPRs) is characterized by abnormal sensitivity to a number of seizure provoking stimuli. The GEPR model is composed of two independently derived colonies with each exhibiting a characteristic convulsive pattern. In response to a standardized sound stimulus, GEPR-3s exhibit moderate or clonic convulsions while GEPR-9s exhibit more severe tonic extensor convulsions. In order to further characterize the neurochemical abnormalities that underlie seizure predisposition in GEPRs, the current study examined serotonin concentrations in 14 discrete brain areas of controls, GEPR-3s and GEPR-9s. In all areas examined, serotonin concentrations were lower in either one or both GEPR types than in seizure resistant controls. In 6 of the 14 areas both GEPR-3s and GEPR-9s had levels significantly lower than controls. In an additional 7 areas GEPRs had serotonin concentrations of similar magnitude which were significantly lower than control when the GEPR values were combined. In cerebelum, GEPR-3s had significantly lower serotonin concentration than either controls or GEPR-9s while in the striatum, GEPR-9s had significantly lower serotonin levels than either GEPR-3s or controls. In summary, GEPRs have widespread deficits in serotonin concentration and that these abnormalities appear to contribute to the seizure predisposition that characterizes these animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.