Abstract

Primula palinuri Petagna is the only Mediterranean and maritime species in the genus Primula, is endemic to coastal cliffs of southern Italy, and is classified as endangered with a decreasing population trend in the IUCN Red List. For this species, the major bottleneck for long-term survival has been recognized to be recruitment failure. In this study, we investigated the seed release strategy of P. palinuri, by using field observations and laboratory experiments. We hypothesized that repetitive cycles of wet/dry conditions and external wax removal could be the environmental triggers of capsule dehiscence. Data showed that capsules treated with wet/dry cycles dehisced within 75 days, while none subjected to constant dry conditions dehisced. Once dehisced, capsules repetitively closed when made wet, and opened again upon drying. Seeds of P. palinuri can remain on plant up to 2 years, over which time capsules reclose when rained upon and reopen upon drying, highlighting the first reported occurrence of serotiny in a Primula species. Serotiny allows P. palinuri to face the dry season, by avoiding capsule dehiscence during the summer dry period and delaying seed release until the beginning of fall, when water availability in the soil is generally no longer a limiting factor.

Highlights

  • Glacial advancement across Europe fragmented once-continuous populations that later differentiated in isolation [1]

  • We investigated the seed release strategy adopted by P. palinuri on the vertical cliffs along the

  • The present study investigated the seed release strategy adopted by P. palinuri on the vertical cliffs, along the Tyrrhenian coast of southern Italy, highlighting, for the first time, the occurrence of serotiny in Primula species

Read more

Summary

Introduction

Glacial advancement across Europe fragmented once-continuous populations that later differentiated in isolation [1]. The peculiar interaction of the environmental factors typical of cliffs has exerted a strong selective pressure on the traits of plants living in this habitat, and the results of this evolutionary process can be quite successful in promoting the survival of many cliff species when compared to their congeners. This might have led to notably higher rates of survival of phylogenetic relicts and rare species occurring on cliffs than in the flora of the surrounding areas [3,4,5,6,7]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.