Abstract

Habitat-mediated global change is driving shifts in species' distributions which can alter the spatial risks associated with emerging zoonotic pathogens. Many emerging infectious pathogens are transmitted by highly mobile species, including bats, which can act as spill-over hosts for pathogenic viruses. Over three years, we investigated the seroepidemiology of paramyxoviruses and Australian bat lyssavirus in a range-expanding fruit bat, the Grey-headed flying fox (Pteropus poliocephalus), in a new camp in Adelaide, South Australia. Over six, biannual, sampling sessions, we quantified median florescent intensity (MFI) antibody levels for four viruses for a total of 297 individual bats using a multiplex Luminex binding assay. Where appropriate, florescence thresholds were determined using finite mixture modelling to classify bats' serological status. Overall, apparent seroprevalence of antibodies directed at Hendra, Cedar and Tioman virus antigens was 43.2%, 26.6% and 95.7%, respectively. We used hurdle models to explore correlates of seropositivity and antibody levels when seropositive. Increased body condition was significantly associated with Hendra seropositivity (Odds ratio = 3.67; p = 0.002) and Hendra virus levels were significantly higher in pregnant females (p = 0.002). While most bats were seropositive for Tioman virus, antibody levels for this virus were significantly higher in adults (p < 0.001). Unexpectedly, all sera were negative for Australian bat lyssavirus. Temporal variation in antibody levels suggests that antibodies to Hendra virus and Tioman virus may wax and wane on a seasonal basis. These findings suggest a common exposure to Hendra virus and other paramyxoviruses in this flying fox camp in South Australia.

Highlights

  • The emergence of zoonoses from wildlife represents an increasingly significant threat to global public health [1]

  • Overall the body condition index (BCI) was higher in winter than summer (+ 2.9 units, p < 0.001) mainly driven by the sub-adult BCI being higher in winter (n = 52, mean = 25.8, range = 20.2–29.6) than summer (n = 52, mean = 21.1, range = 13.8–29.2) (+4.7 units, p < 0.001)

  • Our results suggest that either (i) Australian bat lyssavirus has not been circulating in the camp over this time period; (ii) seropositivity is very short lived; or (iii) infected flying foxes died suddenly and were not sampled at surveys

Read more

Summary

Introduction

The emergence of zoonoses from wildlife represents an increasingly significant threat to global public health [1]. Bats (Order Chiroptera) are the reservoir host of several significant groups of emerging zoonotic viruses including the paramyxoviruses, (e.g. Hendra virus and Nipah virus), coronaviruses, filoviruses and lyssaviruses [2,3,4,5]. In Australia, spill-over of three viruses associated with bats of the genus Pteropus, known as flying foxes, has led to morbidity and mortality in domestic animals and humans. They include two paramyxoviruses, Hendra virus and Menangle virus, and a rhabdovirus, Australian bat lyssavirus [6,7,8,9,10]. It has been associated with sub-clinical infection in humans and still births and fetal abnormalities in pigs [13]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call