Abstract

Lyme disease, a global health concern, is caused by infection with Borrelia burgdorferi, B. afzelii, or B. garinii. The spirochete responsible for the disease in the United States is B. burgdorferi and is spread by the bite of an infected Ixodes tick. We utilized multiple two-dimensional gel techniques combined with proteomics to reveal the full humoral immune response of mice and Lyme patients to membrane-associated proteins isolated from Borrelia burgdorferi. Our studies indicated that a subset of immunogenic membrane-associated proteins (some new and some previously identified) was recognized by mice experimentally infected with Borrelia burgdorferi either by low-dose needle inoculation or by tick infestation. Moreover, the majority of these immunogenic membrane-associated proteins were recognized by sera from patients diagnosed with early-disseminated Lyme disease. These included RevA, ErpA, ErpP, DbpA, BmpA, FtsZ, ErpB, LA7, OppA I, OppA II, OppA IV, FlhF, BBA64, BBA66, and BB0323. Some immunogens (i.e., BBI36/38) were more reactive with sera from mice than Lyme patients, while additional membrane proteins (i.e., FlaB, P66, LA7, and Hsp90) were recognized more strongly with sera from patients diagnosed with early-localized, early-disseminated, or late (chronic)-stage Lyme disease. We were able to examine the humoral response in Lyme patients in a temporal fashion and to identify the majority of immunoreactive proteins as the disease progresses from early to late stages. This serologic proteome analysis enabled the identification of novel membrane-associated proteins that may serve as new diagnostic markers and, more importantly, as second-generation vaccine candidates for protection against Lyme disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.