Abstract

Soil Tillage serious game designed as a training media has been researched based on the plowing forces using polynomial functions. However, the learning process is rare; hence the players in Serious Games (SG) are less engaged and tend to be more static in their games. The effects of vertical cutting angle, plowshare depth, and motor speed affect the soil plowing force in soil tillage. Therefore it is expected that a plow force model with a learning function will generate more actual conditions, engage the player and eventually affect the player’s behavior. The serious game design uses a Hierarchical Finite State Machine (HFSM) in this study. HFSM state is motor speed, vertical cutting angle, and plowing depth. The learning function is based on Neural Network (NN), with a multilayer feed-forward neural network (FFNN) is chosen to estimate plowing forces. The Levenberg-Marquardt algorithm is used by NN to approach second-order training speed without computing the Hessian matrix and is the fastest backpropagation algorithm. The result of the research is a plowing force model values closer to the actual by giving players feedback as they learn. In the transition, HFSM has a feedback value to the initial state, which is helpful as part of measuring one game cycle that is run, thus providing a learning experience in a serious game.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.