Abstract

The novel coronavirus identified as severe acute respiratory syndrome-coronavirus-2 causes acute respiratory distress syndrome (ARDS). Our aim in this study is to assess the incidence of life-threatening complications like pneumothorax, haemothorax, pneumomediastinum and subcutaneous emphysema, probable risk factors and effect on mortality in coronavirus disease-2019 (COVID-19) ARDS patients treated with mechanical ventilation (MV). Data from 96 adult patients admitted to the intensive care unit with COVID-19 ARDS diagnosis from 11 March to 31 July 2020 were retrospectively assessed. A total of 75 patients abiding by the study criteria were divided into two groups as the group developing ventilator-related barotrauma (BG) (N = 10) and the group not developing ventilator-related barotrauma (NBG) (N = 65). In 10 patients (13%), barotrauma findings occurred 22 ± 3.6 days after the onset of symptoms. The mortality rate was 40% in the BG-group, while it was 29% in the NBG-group with no statistical difference identified. The BG-group had longer intensive care admission duration, duration of time in prone position and total MV duration, with higher max positive end-expiratory pressure (PEEP) levels and lower min pO2/FiO2 levels. The peak lactate dehydrogenase levels in blood were higher by statistically significant level in the BG-group (P < 0.05). The contribution of MV to alveolar injury caused by infection in COVID-19 ARDS patients may cause more frequent barotrauma compared to classic ARDS and this situation significantly increases the MV and intensive care admission durations of patients. In terms of reducing mortality and morbidity in these patients, MV treatment should be carefully maintained within the framework of lung-protective strategies and the studies researching barotrauma pathophysiology should be increased.

Highlights

  • First emerging in Wuhan state in China, the novel coronavirus identified as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected more than 100 million people around the world since December 2019 and continues to spread rapidly

  • The primary aim of our study is to reveal probable causes of life-threatening complications such as PX, haemothorax, pneumomediastinum and subcutaneous emphysema that may occur during invasive mechanical ventilation (MV) of COVID-19 patients monitored and treated in intensive care with the acute respiratory distress syndrome (ARDS) tableau in line with the same protocols and to retrospectively assess the effect on mortality and risk factors

  • In the date interval when data were collected in the study, a total of 96 patients in the ICU had confirmed COVID-19 diagnosis with RT-PCR tests based on nasopharyngeal swabs or endotracheal aspirate samples

Read more

Summary

Introduction

First emerging in Wuhan state in China, the novel coronavirus identified as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected more than 100 million people around the world since December 2019 and continues to spread rapidly. With very rapid spread in a short duration due to high transmissivity and rapid speed, it causes severe pneumonia tableau that can progress to acute respiratory distress syndrome (ARDS) in humans. This disease, defined as coronavirus disease-2019 (COVID-19) by the World Health Organization (WHO), was accepted as a pandemic on 11 March 2020 and Turkey declared its first case on the same date [1]. Our hospital has operated as a pandemic hospital with a total of 96 patients with COVID-19 diagnosis, severe pneumonia or ARDS tableau and respiratory failure admitted to the intensive care up to 31 July 2020. Patients with respiratory distress newly occurring or worsening within 1 week, radiological bilateral pulmonary involvement unexplained by nodules or collapse, presence of hypoxaemia without a cause like cardiac disease or excessive fluid loading, and O2 rate in inspirium air fraction of partial arterial oxygen pressure (PaO2 / FiO2) ⩽300 mmHg were diagnosed with ARDS, while the condition of positive real-time PCR was required for COVID-19 diagnosis [2]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call