Abstract

Procedures such as solid-organ transplants and cancer treatments can leave many patients in an immunocompromised state. This leads to their increased susceptibility to opportunistic diseases such as fungal infections. Mucormycosis infections are continually emerging and pose a serious threat to immunocompromised patients. Recently there has been a sharp increase in mucormycosis cases as a secondary infection in patients battling severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Mucorales fungi are notorious for presenting resistance to most antifungal drugs. The absence of effective means to treat these infections results in mortality rates approaching 100% in cases of disseminated infection. One of the most effective antifungal drug classes currently available is the echinocandins. Echinocandins seem to be efficacious in the treatment of many other fungal infections. Unfortunately, susceptibility testing has found that echinocandins have little to no effect on Mucorales fungi. In this study, we found that the model Mucorales Mucor circinelloides genome carries three copies of the genes encoding the echinocandin target protein β-(1,3)-d-glucan synthase (fksA, fksB, and fksC). Interestingly, we found that exposing M. circinelloides to micafungin significantly increased the expression of the fksA and fksB genes, resulting in an increased accumulation of β-(1,3)-d-glucan on the cell walls. However, this overexpression of the fks genes is not directly connected to the intrinsic resistance. Subsequent investigation discovered that the serine/threonine phosphatase calcineurin regulates the expression of fksA and fksB, and the deletion of calcineurin results in a decrease in expression of all three fks genes. Deletion of calcineurin also results in a lower minimum effective concentration (MEC) of micafungin. In addition, we found that duplication of the fks gene is also responsible for the intrinsic resistance, in which lack of either fksA or fksB led a lower MEC of micafungin. Together, these findings demonstrate that calcineurin and fks gene duplication contribute to the intrinsic resistance to micafungin we observe in M. circinelloides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.