Abstract
Affinity purified IgG from sera of patients with amyotrophic lateral sclerosis (ALS) is claimed to enhance transmitter release, induce apoptotic death of cultured motoneurones, and elicit a distinctive cytopathology with raised Ca(2+) in mouse motoneurones. An alternative hypothesis attributes these events to serine proteases in ALS sera. To test this, motoneurones in BALB/c mice injected intraperitoneally with plasminogen affinity purified from sera of ALS patients and healthy controls were analysed using immunochemical and ultrastructural morphometric methods. The responses were validated in motoneurones of mice injected with commercially purified plasminogen, tissue plasminogen activator (tPA), or plasmin. Motoneurones in non-injected mice had normal morphology and ultrastructure without evidence of electron-dense degeneration. Purified plasminogen from both ALS patients and healthy controls, evoked electron-dense motoneurone degeneration, as did commercially purified plasminogen and tPA. The common cytopathology comprised disruption and distension of Nissl body rough endoplasmic reticulum, cytoplasmic polyribosomal proliferation, and significant Ca(2+) enhancement in mitochondria. By contrast, using affinity purified serum immunoglobulins, ALS-IgG but not IgG from healthy or disease controls, elicited necrosis, with 30% of ALS-IgGs tested evoking electron-dense degeneration in 40% of motoneurones. The primary cytopathology was extensive swelling of Golgi endoplasmic reticulum and mitochondria, with enhancement of Ca(2+) in Golgi endoplasmic reticulum and presynaptic boutons. We conclude that serine proteases purified from sera of ALS patients elicits a distinctive cytopathology and pattern of Ca(2+) enhancement in motoneurones different from that found on passive transfer of affinity purified ALS-IgG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.