Abstract

Following myocardial infarction (MI), the heart repairs itself via a fibrotic repair response. The degree of fibrosis is determined by the balance between deposition of extracellular matrix (ECM) by activated fibroblasts and breakdown of nascent scar tissue by proteases that are secreted predominantly by inflammatory cells. Excessive proteolytic activity and matrix turnover has been observed in human heart failure, and protease inhibitors in the injured heart regulate matrix breakdown. Serine protease inhibitors (Serpins) represent the largest and the most functionally diverse family of evolutionary conserved protease inhibitors, and levels of the specific Serpin, SerpinA3, have been strongly associated with clinical outcomes in human MI as well as non-ischaemic cardiomyopathies. Yet, the role of Serpins in regulating cardiac remodelling is poorly understood. The aim of this study was to understand the role of Serpins in regulating scar formation after MI. Using a SerpinA3n conditional knockout mice model, we observed the robust expression of Serpins in the infarcted murine heart and demonstrate that genetic deletion of SerpinA3n (mouse homologue of SerpinA3) leads to increased activity of substrate proteases, poorly compacted matrix, and significantly worse post-infarct cardiac function. Single-cell transcriptomics complemented with histology in SerpinA3n-deficient animals demonstrated increased inflammation, adverse myocyte hypertrophy, and expression of pro-hypertrophic genes. Proteomic analysis of scar tissue demonstrated decreased cross-linking of ECM peptides consistent with increased proteolysis in SerpinA3n-deficient animals. Our study demonstrates a hitherto unappreciated causal role of Serpins in regulating matrix function and post-infarct cardiac remodelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.