Abstract

SaCyp, a staphylococcal cyclophilin involved in both protein folding and pathogenesis, has a Ser residue at position 106 and a Trp residue at position 136. While Ser 106 of SaCyp aligned with a cyclosporin A (CsA) binding Ala residue, its Trp 136 aligned with a Trp or a Phe residue of most other cyclophilins. To demonstrate the exact roles of Ser 106 and Trp 136 in SaCyp, we have elaborately studied rCyp[S106A] and rCyp[W136A], two-point mutants of a recombinant SaCyp (rCyp) harboring an Ala substitution at positions 106 and 136, respectively. Of the mutants, rCyp[W136A] showed the rCyp-like CsA binding affinity and peptidyl-prolyl cis-trans isomerase (PPIase) activity. Conversely, the PPIase activity, CsA binding affinity, stability, tertiary structure, surface hydrophobicity, and Trp accessibility of rCyp[S106A] notably differed from those of rCyp. The computational experiments also reveal that the structure, dimension, and fluctuation of SaCyp are not identical to those of SaCyp[S106A]. Furthermore, Ser at position 106 of SaCyp, compared to Ala at the same position, formed a higher number of non-covalent bonds with CsA. Collectively, Ser 106 is an indispensable residue for SaCyp that keeps its tertiary structure, function, and stability intact. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call