Abstract

Multiple-load and multiple-source systems are widely present in the current technology. These systems require controlling either the supplied voltage or power to several loads with different requirements simultaneously. As a consequence, the cost and size of the power stage may increase beyond the admissible limits for certain applications. Considering multiple-inductor loads, a novel series-resonant multiinverter topology is proposed to obtain a cost-effective and high-power density solution. The converter is based on a common inverter block and a resonant-load block. The performed analysis includes the description of the operation modes and the control strategy analysis. Domestic induction heating has been considered for application due to its special cost and size requirements, and the extensive inductor use. The proposed converter has been designed and validated experimentally through a prototype, which includes the power converter and the field-programmable gate array-based control architecture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.