Abstract

AbstractThis work presents the results of a detailed series resistance characterization of silicon solar cells with screen‐printed front contacts using hotmelt silver paste. Applying the hotmelt technology energy conversion efficiencies up to 18·0% on monocrystalline wafers with a size of 12·5 cm × 12·5 cm have been achieved, an increase of 0·3% absolute compared to cells with conventional screen‐printed contacts. This is mainly due to the reduction in the finger resistance to values as low as 14 Ω/m, which reduces the series resistance of the solar cell significantly. To retrieve the lumped series resistance as accurately as possible under the operating condition, different determination methods have been analyzed. Methods under consideration were fitting of the two‐diode equation function to a dark IV‐curve, integration of the area A under an IV‐curve, comparison of a jsc–Voc with a one‐sun IV‐curve, comparison of the jsc and Voc points of a shaded curve with the one‐sun IV‐curve as well as comparison of a dark IV‐curve with a one‐sun IV‐curve, and comparison of IV‐curves measured at different light intensities. The performed investigations have shown that the latter four methods all resulted in reliable series resistance values. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.