Abstract

A three-dimensional supermolecule structure is easily formed due to the diverse coordination modes of high-oxidation-state lanthanide metal ions. However, the design and construction of zero-dimensional (0 D) dish-shaped high-nuclearity lanthanide clusters are difficult. Herein, for the first time, we synthesized a series of the largest dish-shaped high-nuclearity lanthanide nanoclusters (1-4) by in situ tandem reactions under solvothermal one-pot conditions. The formation of 1 and 2 involved an in situ reaction of aldehydes and amines, while the condensation reactions between aldehydes occurred in 3 and 4. Based on the structural characteristics of the dish-shaped lanthanide clusters, we proposed two possible assembly mechanisms involving Dy1 → Dy7 → Dy13 → Dy19 (planar epitaxial growth mechanism) and Dy1 → Dy12 → Dy18 → Dy19 (planar internal growth mechanism).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call