Abstract

Four new dicyanamide (dca) bridged multinuclear Zn(II)-Schiff-base complexes, {[Zn2L(1)(μ1,5-dca)dca]·CH3OH}2 (1), [Zn2L(2)(μ1,5-dca)dca]n (2), [Zn3L(3)2(μ1,5-dca)2]n (3), and [(ZnL(4))2Zn(μ1,5-dca)dca]n (4), have been synthesized using four different Schiff bases L(1)H2 = N,N(/)-bis(3-methoxysalicylidenimino)-1,3-diaminopentane, L(2)H2 = N,N'-bis(5-bromo-3-methoxysalicylidenimino)-1,3-diaminopropane, L(3)H2 = N,N'-bis(5-bromosalicylidenimino)-1,3-diaminopropane, and L(4)H2 = N,N'-bis(5-chlorosalicylidenimino)-1,3-diaminopropane and NaN(CN)2 in order to extend the metal-ligand assembly. The directional properties of linear end-to-end bridging dca ligands have resulted in different metal ion connectivities leading to unique variety of templates in each of the complexes. All the ligands and complexes have been characterized by microanalytical and spectroscopic techniques. The structures of the complexes have been conclusively determined by single crystal X-ray diffraction studies. Thermogravimetric analyses have been performed to investigate the thermal stability of the metal-organic frameworks. Finally, the photoluminescence properties of the complexes as well as their respective ligands have been investigated with a comparative approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call