Abstract

This work focuses on developing a mobility control system for high-speed series-hybrid electric tracked vehicles, which operate with independent traction motors for each track. The scope of this research includes modeling a series-hybrid powertrain specific to military tracked vehicles and conducting an in-depth analysis of its dynamic behavior. Subsequently, this study conducts a critical review of mobility control approaches sourced from the literature, identifying key techniques relevant to high-inertia vehicular applications. Building on foundational models, this study proposes a robust closed-loop mobility control system aimed at ensuring precise and stable off-road vehicle operations. The system’s resilience and adaptability to a variety of driving conditions are emphasized, with a particular focus on handling maneuvers such as steering and pivoting, which are challenging operations for tracked vehicle agility. The performance of the proposed mobility control system is tested through a series of simulations, covering a spectrum of operational scenarios. These tests are conducted in both offline simulation settings, which permit meticulous fine-tuning of system parameters, and real-time environments that replicate actual field conditions. The simulation results demonstrate the system’s capacity to improve the vehicular response and highlight its potential impact on future designs of mobility control systems for the heavy-duty vehicle sector, particularly in defense applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call