Abstract

Menopause results in estrogen hormone deficiency which causes changes in brain morphology and cognitive impairments. The risk of breast and ovarian cancer increases with estrogen therapy. Thus, finding a substitute treatment option for women in menopause is necessary. In the current study, the impact of chronic sericin treatment (200mg/kg/day for 6weeks, gavage) on memory process, oxidative stress markers, synaptic neurotransmission, and acetylcholinesterase (AChE) activity in the hippocampus (HIP) of ovariectomized (OVX) mice was examined and compared to the effects of 17β-estradiol (Es; 20µg/kg, s.c.). The results demonstrated that sericin and Es administration improved spatial and recognition memory of the OVX animals in the both Lashley III maze and novel object recognition tests. Moreover, sericin-treated OVX mice showed decreased ROS levels, increased endogenous antioxidant defense capacity, and decreased AChE activity in the HIP. Additionally, sericin and Es therapy up-regulated pre-and-post-synaptic protein markers and increased BDNF, CREB, and protein kinase A (PKA) protein expressions in the HIP of OVX mice. Overall, the activation of the PKA-CREB-BDNF signaling pathway by sericin can provide protection against OVX-induced cognitive dysfunction, making it a potential alternative for managing cognitive deficits in postmenopausal women.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call