Abstract
In this paper we consider serial rings with T-nilpotent prime radical, factor-rings of which by the prime radical are right Noetherian rings. We prove that the prime quiver of such a ring is a disconnected union of cycles and chains. In the case when the prime quiver of such a serial ring is a chain the prime radical is nilpotent. For serial rings with nilpotent prime radical we introduce an analogue of Kupisch series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.