Abstract

Profiles of electric potential (V) integrated from balloon‐borne electric field (E) measurements are used to investigate the electrical evolution of thunderstorms over the mountains in central New Mexico. With sequential soundings through multiple storms, the time skew associated with obtaining V from a noninstantaneous sounding is also studied. The data show that a basic V profile, with a maximum above a minimum, forms in the early stage of the storm and is maintained throughout its mature stage. Series of soundings from individual storms show only a gradual evolution in the V profile from the early through the mature stage, as the extrema descend in altitude and become shallower and vertically closer together. More evolution occurs in the late stage, when the shape of the V profile reverses to have a minimum above a maximum. The 17 V(z) profiles from the mature stage of five different storms are also very similar in overall shape, suggesting that the basic shape is not significantly affected by differences in lightning flash rate among these storms. The findings indicate that the potential profile during a typical sounding in the mature stage is relatively stable, and the overall shape of the mature stage V profile does not change markedly on the time scale of a particular balloon sounding (10–30 min) through New Mexico mountain storms. Thus time‐skew problems in the V profiles are minor during a storm's mature stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call