Abstract

To study the potential of diffusion tensor imaging (DTI) to serve as a biomarker for radiation-induced brain injury during chemo-radiotherapy (RT) treatment. Serial DTI data were collected from 18 high-grade glioma (HGG) patients undergoing RT and 7 healthy controls. Changes across time in mean, standard deviation (SD), skewness, and kurtosis of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λa ), and transversal diffusivity (λt ) within the normal-appearing white matter (NAWM) were modeled using a linear mixed-effects model to assess dose dependent changes of five dose bins (0-60 Gy), and global changes compared with a control group. Mean MD, λa and λt were all significantly increasing in >41 Gy dose regions (0.14%, 0.10%, and 0.18% per week) compared with <12 Gy regions. SD λt had significant dose dependent time evolution of 0.019*dose per week. Mean and SD MD, λa and λt in the global NAWM of the patient group significantly increased (mean; 0.06%, 0.03%, 0.09%, and SD; 0.57%, 0.34%, 0.51 per week) compared with the control group. The changes were significant at week 6 of, or immediately after RT. DTI is not sensitive to acute global NAWM changes during the treatment of HGG, but sensitive to early posttreatment changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.