Abstract

BackgroundMicrobial communities harbor important biotechnological potential in diverse domains, however, the engineering and propagation of such communities still face both knowledge and know-how gaps. More specifically, culturing tools are needed to propagate and shape microbial communities, to obtain desired properties, and to exploit them. Previous work suggested that micro-confinement and segregation of microorganisms using invert (water-in-oil, w/o) emulsion broth can shape communities during propagation, by alleviating biotic interactions and inducing physiological changes in cultured bacteria. The present work aimed at evaluating invert emulsion and simple broth monophasic cultures for the propagation and shaping of bacterial communities derived from raw milk in a serial propagation design.ResultsThe monophasic setup resulted in stable community structures during serial propagation, whereas the invert emulsion system resulted in only transiently stable structures. In addition, different communities with different taxonomic compositions could be obtained from a single inoculum. Furthermore, the implementation of invert emulsion systems has allowed for the enrichment of less abundant microorganisms and consequently facilitated their isolation on culture agar plates.ConclusionsThe monophasic system enables communities to be propagated in a stable manner, whereas the invert emulsion system allowed for the isolation of less abundant microorganisms and the generation of diverse taxonomic compositions from a single inoculum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call