Abstract
In vitro studies on adherent cells require a process of passage to dissociate the cells from the culture substrate using enzymes or other chemical agents to maintain cellular activity. However, these proteolytic enzymes have a negative influence on the viability and phenotype of cells. The mesenchymal stem cell (MSC)-like cell line, C3H10T1/2, adhered, migrated, and proliferated to the same extent on newly designed microporous titanium (Ti) membrane and conventional culture dish, and spontaneous transfer to another substrate without enzymatic or chemical dissociation was achieved. The present study pierced a 10 μm-thick pure Ti sheet with 25 μm square holes at 75 μm intervals to create a dense porous structure with biomimetic topography. The pathway of machined holes allowed the cells to access both sides of the membrane frequently. In a culture with Ti membranes stacked above- and below-seeded cells, cell migration between the neighboring membranes was confirmed using the through-holes of the membrane and contact between the membranes as migration routes. Furthermore, the cells on each membrane migrated onto the conventional culture vessel. Therefore, a cell culture system with enzyme-free passaging was developed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.