Abstract

In this paper, we consider serially concatenated schemes with outer novel and efficient low-density parity-check (LDPC) codes and inner modulations effective against channel impairments. With a pragmatic approach, we show how to design LDPC codes tailored for simple and robust modulation formats, such as differentially encoded (DE) modulations. The LDPC codes are optimized through the use of a recently proposed analysis technique based on extrinsic information transfer (EXIT) charts. In particular, we optimize, through a clever random walk in the parametric space, the degree distributions of the outer LDPC codes, obtaining significant insights on the impact of such distributions on the performance of the proposed concatenated schemes. The optimization is carried out for transmission over both the additive white Gaussian noise channel and a noncoherent channel. The performance predicted by the EXIT chart-based optimization is confirmed by results obtained via computer simulations, considering phase-shift keying and quadrature amplitude modulation at the transmitter side, and iterative demodulation/decoding at the receiver side. The significance of the proposed optimized design of LDPC-coded schemes with DE modulations is validated by the fact that standard nonoptimized LDPC codes perform poorly when used together with inner DE modulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.