Abstract

The Etruscans, the only preclassical European population that has been genetically characterized so far, share only two haplotypes with their modern geographic counterparts, the Tuscans, who, nonetheless, appear to be their closest relatives. We modeled 10 demographic scenarios spanning the last 2,500 years and tested by serial coalescent simulation whether any are consistent with the patterns of genetic diversity observed within and between the Etruscan and the modern Tuscan populations. Models in which the Etruscans are the direct ancestors of modern Tuscans appear compatible with the observed data only when they also include a very high mutation rate and an ancient founder effect. A better fit was obtained when the ancient and the modern samples were extracted from two independently evolving populations, connected by little migration. Simulated and observed parameters were also similar for a scenario in which the ancient samples came from a subset, e.g., a social elite, genetically differentiated from the bulk of the Etruscan population. In principle, these results may be biased by factors such as gross and systematic errors in the ancient DNA sequences and failure to sample suitable modern individuals. If neither proves to be the case, this study strongly suggests that either the mitochondrial mutation rate is much higher than currently believed or the Etruscans left very few modern mitochondrial descendants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.