Abstract

to investigate serial changes of lung morphology and biochemical profiles in a rat model of bronchopulmonary dysplasia (BPD) induced by intra-amniotic lipopolysaccharide (LPS) administration and postnatal hyperoxia (85%). we evaluated histological changes of the lungs and compared the levels of interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and protein carbonyl in lung tissue on days 1, 7, and 14 after birth in a rat model of BPD. the inhibition of alveolarization was sustained in the LPS plus hyperoxia group from day 7 to 14, whereas alveolarization resumed in the hyperoxia group after oxygen exposure was withdrawn at day 7. Administration of LPS alone did not adversely affect lung morphometry. IL-6 levels showed transient overexpression at day 1 in the LPS-treated groups, but decreased at days 7 and 14. VEGF protein levels were elevated in the LPS-treated groups, but not in the hyper-oxia and control groups at days 1, 7, and 14. Exposure to hyperoxia affected protein carbonyl levels in the hyperoxia group at days 7 and 14. lung injury induced by intra-amniotic inflammation and postnatal hyperoxia may be due to inhibition of alveolarization without recovery even after withdrawal of oxygen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.