Abstract

Muscle damage is a common response to unaccustomed eccentric exercise; however, the effects of skeletal muscle damage on local vascular function and blood flow are poorly understood. This study examined serial local vascular responses to flow-mediated (endothelial-dependent) and nitroglycerin-mediated (endothelial-independent) dilation in the brachial artery after strenuous eccentric exercise and serially assessed resting blood flow. Ten healthy males performed 50 maximal eccentric unilateral arm contractions to induce muscle damage to the biceps brachii. Changes in maximal isometric strength and vascular responses were assessed 1, 24, 48, and 96 h after exercise. Mean blood velocities and arterial diameters, measured with Doppler ultrasound, were used to calculate blood flow and shear stress (expressed as area under the curve). Eccentric exercise resulted in impaired maximal isometric strength for up to 96 h (p < 0.001). Reductions in flow-mediated dilation (before exercise, 9.4% ± 2.6%; 1 h after exercise, 5.1% ± 2.2%) and nitroglycerin responses (before exercise, 26.3% ± 6.5%; 1 h after exercise, 20.7% ± 4.7%) were observed in the 1 h after exercise and remained lower for 96 h (p < 0.05). The shear stress response was attenuated immediately after exercise and remained impaired for 48 h (p < 0.05). Resting blood pressure and muscle blood flow remained similar throughout the study. Results suggest that muscle damage from eccentric exercise leads to impaired local endothelial and vascular smooth muscle function. Lower shear stress after exercise might contribute to the observed reduction in flow-mediated dilation responses, but the mechanism responsible for the attenuated endothelial-independent vasodilation remains unclear.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call