Abstract
Dysregulation of iron in the cerebral motor areas has been hypothesized to occur in individuals with amyotrophic lateral sclerosis (ALS). There is still limited knowledge regarding iron dysregulation in the progression of ALS pathology. Our objectives were to use magnetic resonance based quantitative susceptibility mapping (QSM) to investigate the association between iron dysregulation in the motor cortex and clinical manifestations in patients with limb-onset ALS, and to examine changes in the iron concentration in the motor cortex in these patients over a 6-month period. Iron concentration was investigated using magnetic resonance based QSM in the primary motor cortex and the pre-motor area in 13 limb-onset ALS patients (including five lumbar onset, six cervical onset and two flail arm patients), and 11 age- and sex-matched control subjects. Nine ALS patients underwent follow-up scans at 6 months. Significantly increased QSM values were observed in the left posterior primary motor area (P=0.02, Cohen's d =0.9) and right anterior primary motor area (P=0.02, Cohen's d =0.92) in the group of limb-onset ALS patients compared to that of control subjects. Increased QSM was observed in the primary motor and pre-motor area at baseline in patients with lumbar onset ALS patients, but not cervical limb-onset ALS patients, compared to control subjects. No significant change in QSM was observed at the 6-month follow-up scans in the ALS patients. The findings suggest that iron dysregulation can be detected in the motor cortex in limb-onset ALS, which does not appreciably change over a further 6 months. Individuals with lumbar onset ALS appear to be more susceptible to motor cortex iron dysregulation compared to the individuals with cervical onset ALS. Importantly, this study highlights the potential use of QSM as a quantitative radiological indicator in early disease diagnosis in limb-onset ALS and its subtypes. Our serial scans results suggest a longer period than 6 months is needed to detect significant quantitative changes in the motor cortex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.