Abstract

In this paper, the end-to-end performance of a wireless relay transmission system that employs amplify-and-forward (AF) relays and operates in an interference-limited Nakagami- m fading environment is studied. The wireless links from one relay node to another experience Nakagami- m fading, and the number of interferers per hop is Poisson distributed. The aggregate interference at each relay node is modeled as a shot-noise process whose distribution follows an α-stable process. For the considered system, analytical expressions for the moments of the end-to-end signal-to-interference ratio (SIR), the end-to-end outage probability (OP), the average bit-error probability (ABEP), and the average channel capacity are obtained. General asymptotic expressions for the end-to-end ABEP are also derived. The results provide useful insights regarding the factors affecting the performance of the considered system. Monte Carlo simulation results are further provided to demonstrate the validity of the proposed mathematical analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.