Abstract
Nonlinear model predictive control (NMPC) can directly handle multi-input multi-output nonlinear systems and explicitly consider input and state constraints. However, the computational load for nonlinear programming (NLP) of large-scale systems limits the range of possible applications and degrades NMPC performance. An NLP sensitivity based approach, advanced-step NMPC, has been developed to address the online computational load. In addition, for cases where the NLP solving time exceeds one sampling time, two types of advanced-multi-step NMPC (amsNMPC), parallel and serial, have been proposed. However, in previous studies, a serial amsNMPC could not be applied to large-scale problems because of the size of extended Karush–Kuhn–Tucker matrix and its Schur complement decomposition, and the robustness was analyzed under a conservative assumption for memory effects. In this paper, we propose a serial amsNMPC using an extended sensitivity method to increase the online computation speed further. We successfully apply it to a large-scale air separation unit using the sparse matrix handling packages of Python, Pyomo, and k_aug tools. Furthermore, an auxiliary NLP formulation is defined to analyze the robustness. Using this with the key properties of an extended sensitivity matrix, we can prove robustness while avoiding the memory effects term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.