Abstract

The conversion of toluene and o-, m- and p-xylene to their respective side-chain and ring monohydroxylated metabolites by human liver microsomes was investigated. Methyl hydroxylation, to form a benzylalcohol, was the major metabolic pathway for all four methylbenzenes. With the exception of 2,4-dimethylphenol formation from m-xylene, ring hydroxylation accounted for < 5% of total metabolite formation. However, regioselectivity of ring hydroxylation was apparent, with hydroxylation occurring only at positions ortho and/or para to a methyl substituent. Toluene and each xylene isomer exhibited biphasic methylhydroxylation kinetics in human liver microsomes. The high-affinity component of each methylhydroxylation was selectively inhibited by diethyldithiocarbamate and correlated significantly with cytochrome P-4502E1 (CYP2E1) content and activities in a panel of human liver microsomes. cDNA-expressed CYP2E1 was shown to catalyze the formation of each benzylalcohol, with apparent Km values similar to those of the high affinity microsomal reactions. In contrast, the conversion of m-xylene to 2,4-dimethylphenol followed single enzyme Michaelis-Menten kinetics, was inhibited selectively by furafylline, and correlated significantly with known CYP1A2 catalyzed reactions. cDNA-expressed CYP1A2 converted m-xylene to 2,4-dimethylphenol, with an apparent Km similar to that of the microsomal reaction. Although CYP1A2 appears to be responsible for the formation of the minor (phenolic) metabolites of toluene and the xylene isomers, CYP2E1 catalyzed methylhydroxylation will be the major determinant of the clearance of these compounds in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.