Abstract

We demonstrate an atomic magnetometry using amplitude-modulated pumping and hyperfine repumping techniques in a paraffin-coated cell. By exploiting the constructive interference between spins polarized by the pump beam and an additional repump beam, we observe a three-fold increase in the amplitude of magnetic resonance, along with a reduction in linewidth by approximately two times. The implementation of the repump beam effectively narrows the linewidth, demonstrating successful suppression of spin-exchange relaxation. This reduction in relaxation rate, combined with the enhanced signal, significantly improves the sensitivity of the magnetometer. Consequently, our technique offers a promising approach for achieving SERF-like magnetometry with sub-fT-level sensitivity in Earth-field range and room-temperature environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.