Abstract

Abstract We investigate the ability of the Large Synoptic Survey Telescope (LSST) to discover kilonovae (kNe) from binary neutron star (BNS) and neutron star–black hole (NSBH) mergers, focusing on serendipitous detections in the Wide-Fast-Deep (WFD) survey. We simulate observations of kNe with proposed LSST survey strategies, focusing on cadence choices that are compatible with the broader LSST cosmology programme. If all kNe are identical to GW170817, we find the baseline survey strategy will yield 58 kNe over the survey lifetime. If we instead assume a representative population model of BNS kNe, we expect to detect only 27 kNe. However, we find the choice of survey strategy significantly impacts these numbers and can increase them to 254 and 82 kNe over the survey lifetime, respectively. This improvement arises from an increased cadence of observations between different filters with respect to the baseline. We then consider the detectability of these BNS mergers by the Advanced LIGO/Virgo (ALV) detector network. If the optimal survey strategy is adopted, 202 of the GW170817-like kNe and 56 of the BNS population model kNe are detected with LSST but are below the threshold for detection by the ALV network. This represents, for both models, an increase by a factor greater than 4.5 in the number of detected sub-threshold events over the baseline strategy. These sub-threshold events would provide an opportunity to conduct electromagnetic-triggered searches for signals in gravitational-wave data and assess selection effects in measurements of the Hubble constant from standard sirens, e.g. viewing angle effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call