Abstract

IntroductionOverweight status should not be considered merely an aesthetic concern; rather, it can incur health risks since it may trigger a cascade of events that produce further fat tissue through altered levels of circulating signaling molecules.There have been few studies addressing the effect of overweight status on the physiological functions of stem cells, including mesenchymal stem cells (MSCs), which are the progenitors of adipocytes and osteocytes and are a subset of the bone marrow stromal cell population.MethodsWe decided to investigate the influence of overweight individuals’ sera on in vitro MSC proliferation and differentiation.ResultsWe observed that in vitro incubation of bone marrow stromal cells with the sera of overweight individuals promotes the adipogenic differentiation of MSCs while partially impairing proper osteogenesis.ConclusionsThese results, which represent a pilot study, might suggest that becoming overweight triggers further weight gains by promoting a bias in the differentiation potential of MSCs toward adipogenesis. The circulating factors involved in this phenomenon remain to be determined, since the great majority of the well known pro-inflammatory cytokines and adipocyte-secreted factors we investigated did not show relevant modifications in overweight serum samples compared with controls.

Highlights

  • Overweight status should not be considered merely an aesthetic concern; rather, it can incur health risks since it may trigger a cascade of events that produce further fat tissue through altered levels of circulating signaling molecules

  • There are several types of stem cells: hematopoietic stem cells (HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs), which are a subset of the marrow stromal cell population

  • Overweight sera did not affect the proliferation, apoptosis or senescence rate of MSC cultures We evaluated whether some in vitro biological properties of MSCs were affected differently by incubation with overweight’ sera (OS) compared with cells treated with Healthy weight sera (HS)

Read more

Summary

Introduction

Overweight status should not be considered merely an aesthetic concern; rather, it can incur health risks since it may trigger a cascade of events that produce further fat tissue through altered levels of circulating signaling molecules. There have been few studies addressing the effect of overweight status on the physiological functions of stem cells, including mesenchymal stem cells (MSCs), which are the progenitors of adipocytes and osteocytes and are a subset of the bone marrow stromal cell population. It is evident that in overweight and obese people the level of several circulating cytokines, hormones and other signaling molecules may be dysregulated [4] This may affect the functions of several organs and tissues, including the stem cell niches, which are subsets of tissues and extracellular subsets that can indefinitely house stem cells and control their self-renewal and progeny production by modulating the concentration of signaling molecules, such as hormones, cytokines, growth factors and so on. The microenvironment of mammalian BM is composed of several different elements that support hematopoiesis and bone homeostasis [6] It includes a heterogeneous population of cells: macrophages, fibroblasts, adipocytes, osteoprogenitors, endothelial cells and reticular cells. As a result of the multiple roles that MSCs play in the physiology of an organism, impairment of their functions can have profound consequences for body physiology [7,8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.