Abstract

It is well documented that protein kinase A (PKA) acts as a negative regulator of M phase promoting factor (MPF) by phosphorylating cell division cycle 25 homolog B (Cdc25B) in mammals. However, the molecular mechanism remains unclear. In this study, we identified PKA phosphorylation sites in vitro by LC-MS/MS analysis, including Ser(149), Ser(229), and Ser(321) of Cdc25B, and explored the role of Ser(149) in G(2)/M transition of fertilized mouse eggs. The results showed that the overexpressed Cdc25B-S149A mutant initiated efficient MPF activation by direct dephosphorylation of Cdc2-Tyr(15), resulting in triggering mitosis prior to Cdc25B-WT. Conversely, overexpression of the phosphomimic Cdc25B-S149D mutant showed no significant difference in comparison with the control groups. Furthermore, we found that Cdc25B-Ser(149) was phosphorylated at G(1) and S phases, whereas dephosphorylated at G(2) and M phases, and the phosphorylation of Cdc25B-Ser(149) was modulated by PKA in vivo. In addition, we examined endogenous and exogenous Cdc25B, which were expressed mostly in the cytoplasm at the G(1) and S phases and translocated to the nucleus at the G(2) phase. Collectively, our findings provide evidence that Ser(149) may be another potential PKA phosphorylation target of Cdc25B in G(2)/M transition of fertilized mouse eggs and Cdc25B as a direct downstream substrate of PKA in mammals, which plays important roles in the regulation of early development of mouse embryos.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call