Abstract
In this article, we analyze the symbol error rate (SER) performance of the simultaneous wireless information and power transfer (SWIPT) enabled three-node differential decode-and-forward (DDF) relay networks, which adopt the power splitting (PS) protocol at the relay. The use of non-coherent differential modulation eliminates the need for sending training symbols to estimate the instantaneous channel state information (CSI) at all network nodes, and therefore improves the power efficiency, as compared with the coherent modulation. However, performance analysis results are not yet available for the state-of-the-art detectors such as the maximum-likelihood detector (MLD) and approximate MLD. Existing works rely on the Monte-Carlo simulation method to show the existence of an optimal PS ratio that minimizes the overall SER. In this work, we propose a near-optimal detector with linear complexity with respect to the modulation size. We derive an approximate SER expression and prove that the proposed detector achieves the full diversity order. Based on our expression, the optimal PS ratio can be accurately estimated without requiring any Monte-Carlo simulation. We also extend the proposed detector and its SER analysis for adopting the time switching (TS) protocol at the relay. Simulation results verify the effectiveness of our proposed detector and the accuracy of our SER results in various network scenarios for both PS and TS protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Green Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.