Abstract

BackgroundS-Equol, produced from daidzein by gut microbiota, has been suggested as an potential anti-diabetic agent, but the underlying mechanisms remain unclear. Recent evidences demonstrated that carbohydrate response element-binding protein (Chrebp)/Thioredoxin-interacting protein (Txnip) signaling played central roles on diabetes progression, particularly in relation to the function maintenance and apoptosis of pancreatic β-cell. Here, we investigated the effects of S-Equol on β-cell function and Chrebp/Txnip signaling.MethodsZucker diabetic fatty rats were treated with racemic Equol (120 mg/kg.BW.d) for 6 weeks. The glucose and lipid metabolism were monitored during the supplementation, and the Chrebp and Txnip expression were measured by using Western blotting. INS-1 cells were incubated with high glucose (26.2 mM) with or without S-Equol (0.1 μM, 1 μM, 10 μM) for 48 h. Glucose-stimulated insulin secretion (GSIS) was evaluated by radioimmunoassay, and the apoptosis of INS-1 cells was analyzed using Annexin V-FITC/PI and TUNEL assay. The dual luciferase reporter assay, chromatin immunoprecipitation assay and Western-blotting followed by Chrebp small interfering RNAs were utilized to clarify the mechanism of transcriptional regulation of S-Equol on Chrebp/Txnip signaling and the activities of protein kinase A (PKA) and protein phophatase (PP2A) were also detected.ResultsIn vivo, Equol supplementation delayed the onset of the hyperglycemia and hyperlipemia, ameliorated insulin secretion failure, enhanced GSIS in isolated islets, and significantly reduced Chrebp and Txnip expression in islets. In vitro, S-Equol treatment enhanced GSIS of high glucose cultured INS-1 cell, and reduced apoptosis of INS-1 cells were also observed. Moreover, S-Equol dramatically suppressed Txnip transcription, as evident by the reduction of Txnip protein and mRNA levels and decrease in the Txnip promoter-driven luciferase activity. Meanwhile, S-Equol significantly inhibited Chrebp/Mlx expression and decreased occupancy of Chrebp on the Txnip promoter, and combined with siChrebp, we confirmed that S-Equol improvement of insulin secretion was partially through the Chrebp/Txnip pathway. Furthermore, S-Equol significantly decrease nuclear translocation of Chrebp, which was related with the decrease activity of protein kinase A (PKA) and the increase activity of protein phophatase (PP2A).ConclusionsS-Equol could ameliorate insulin secretion failure, which was dependent on the suppression of Chrebp/Txnip signaling via modulating PKA/PP2A activities.

Highlights

  • S-Equol, produced from daidzein by gut microbiota, has been suggested as an potential anti-diabetic agent, but the underlying mechanisms remain unclear

  • S-Equol improves hyperglycemia and hyperlipemia in Zucker diabetic fatty (ZDF) rats To determine how S-Equol involved in the development of diabetic phenotypes in ZDF rats, we observed the effects of Equol (120 mg/kg.bw.d) treatment on body weight, water intake, food intake, serum glucose level, and serum lipid profile

  • The changes in total cholesterol (Tch), TG, low density lipoprotein (LDL)-c, high density lipoprotein (HDL)-c were shown in Fig. 1i-l, which indicated that Equol supplementation led to a significant reduction of Tch and LDL in ZDF rats

Read more

Summary

Introduction

S-Equol, produced from daidzein by gut microbiota, has been suggested as an potential anti-diabetic agent, but the underlying mechanisms remain unclear. Recent evidences demonstrated that carbohydrate response element-binding protein (Chrebp)/Thioredoxin-interacting protein (Txnip) signaling played central roles on diabetes progression, in relation to the function maintenance and apoptosis of pancreatic β-cell. Recent studies have revealed that Txnip is a potent inhibitor of cellular glucose uptake and aerobic glycolysis [15], and plays a key role in hyperglycemia-induced β cell apoptosis and diabetes development [13, 14, 16,17,18]. In light of Txnip in pathological process in T2DM and the central role of Chrebp in the regulation of Txnip, here we investigated whether S-Equol affects insulin secretion and influences the Chrebp/Txnip signaling both in vivo and in vitro, which would support new evidences to demonstrate the effects and mechanisms of S-Equol on diabetes

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.