Abstract

The genetic and phenotypic diversity of the Ralstonia solanacearum species complex, which causes bacterial wilt to Solanacae, was assessed in 140 strains sampled from the main vegetable production areas of the Mayotte island. Only phylotype I strains were identified in the five surveyed areas. The strains were distributed into the following 4 sequevars: I-31 (85.7%), I-18 (5.0%), I-15 (5.7%), and I-46 (3.6%). The central area of Mayotte was the most diverse region, harboring 4 sequevars representing 47.1% of the collected strains. Virulence tests were performed under field and controlled conditions on a set of 10 tomato breeding line accessions and two commercial hybrid tomato cultivars. The strains belonging to sequevar I-31 showed the highest virulence on the tomatoes (pathotypes T-2 and T-3), whereas sequevars I-18, I-15, and I-46 were grouped into the weakly T-1 pathotype. When the tomato accessions were challenged in the field and growth chambers, the highest level of resistance were observed from the genetically related accessions Hawaii 7996, R3034, TML46, and CLN1463. These accessions were considered moderately to highly resistant to representative strains of the most virulent and prevalent sequevar (I-31). Interestingly, the Platinum F1 cultivar, which was recently commercialized in Mayotte for bacterial wilt resistance, was highly or moderately resistant to all strains. This study represents the first step in the rationalization of resistance deployment strategies against bacterial wilt-causing strains in Mayotte.

Highlights

  • The Ralstonia solanacearum species complex (RSSC) (Gillings and Fahy, 1994) is responsible for bacterial wilt on a broad range of plant hosts comprising more than 200 species in at least 50 families (Hayward, 1994)

  • A total of 140 RSSC strains were sampled from the 24 surveyed sites throughout the 5 vegetable cropping areas in Mayotte

  • The sequevar assignation of the strains based on egl sequencing (140 strains) revealed the presence of four sequevars (I-15, I18, I-31 and I-46) (Figure 2)

Read more

Summary

Introduction

The Ralstonia solanacearum species complex (RSSC) (Gillings and Fahy, 1994) is responsible for bacterial wilt on a broad range of plant hosts comprising more than 200 species in at least 50 families (Hayward, 1994). RSSC is destructive for vegetable crops, including potato, tomato, eggplant and pepper plants. RSSC strains are known for their unusually broad genetic basis and phenotypic diversity in tropical and subtropical areas (Hayward, 1991). Soil-borne RSSC strains invade the roots and colonize the xylem vessels (Vasse et al, 1995), leading to wilt symptoms and the death of their hosts. RSSC strains have been frequently reported to develop latent infections that are maintained at high concentrations in asymptomatic hosts (Grimault and Prior, 1993). Breeding for resistance remains the most effective and sustainable strategy to control

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call