Abstract

The sequestering ability of polyamines and aminoacids of biological and environmental relevance (namely, ethylenediamine, putrescine, spermine, a polyallylamine, a branched polyethyleneimine, aspartate, glycinate, lysinate) toward dimethyltin(IV) cation was evaluated. The stability of various dimethyltin(IV) / ligand species was determined in NaClaq at t = 25°C and at different ionic strengths (0.1 ≤ I/mol L−1 ≤ 1.0), and the dependence of stability constants on this parameter was modeled by an Extended Debye-Hückel equation and by Specific ion Interaction Theory (SIT) approach. At I = 0.1 mol L−1, for the ML species we have log K = 10.8, 14.2, 12.0, 14.7, 11.9, 7.7, 13.7, and 8.0 for ethylenediamine, putrescine, polyallylamine, spermine, polyethyleneimine, glycinate, lysinate, and aspartate, respectively. The sequestering ability toward dimethyltin(IV) cation was defined by calculating the parameter pL50 (the total ligand concentration, as −log CL, able to bind 50% of metal cation), able to give an objective representation of this ability. Equations were formulated to model the dependence of pL50 on different variables, such as ionic strength and pH, and other empirical predictive relationships were also found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.