Abstract

Mineral carbonation is a potentially attractive alternative to storage of compressed CO(2) in underground repositories, known as geosequestration. Processes for the conversion of basic ores, such as magnesium silicates, to carbonates have been proposed by various researchers, with storage of the carbonate as backfill in the original mine representing a solid carbon sink. The stability of such carbon sinks against acid rain and other sources of strong acids is examined here. It is acknowledged that in the presence of strong acid, carbonates will dissolve and release carbon dioxide. A sensitivity analysis covering annual average rainfall and pH that may be encountered in industrialized areas of the United States, China, Europe, and Australia was conducted to determine maximum CO(2) rerelease rates from mineral carbonation carbon sinks. This analysis is based on a worst-case premise that is equivalent to assuming infinitely rapid kinetics of dissolution of the carbonate. The analysis shows that under any likely conditions of pH and rainfall, leakage rates of stored CO(2) are negligible. This is illustrated in a hypothetical case study under Australian conditions. It is thus proposed that sequestration by mineral carbonation can be considered to be permanent on practical human time scales. Other possible sources of acid have also been considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call