Abstract

We consider a puzzle consisting of colored tokens on an n-vertex graph, where each token has a distinct starting vertex and a set of allowable target vertices for it to reach, and the only allowed transformation is to “sequentially” move the chosen token along a path of the graph by swapping it with other tokens on the path. This puzzle is a variation of the Fifteen Puzzle and is solvable in \(\text{ O }(n^3)\) token-swappings. We thus focus on the problem of minimizing the number of token-swappings to reach the target token-placement. We first give an inapproximability result of this problem, and then show polynomial-time algorithms on trees, complete graphs, and cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call