Abstract
Ischemic stroke caused by a thrombus clog and ischemia is one of the most lethal and disabling cerebrovascular diseases. A sequentially targeted delivery system is highly desired to deliver thrombolytics and neuroprotectant to the site of the thrombus and ischemic penumbra, respectively, to pursue a maximized combinational effect. Inspired by the vital roles that platelets play in thrombus formation, herein, we develop a bioengineered "nanoplatelet" (tP-NP-rtPA/ZL006e) for sequentially site-specific delivery of recombinant tissue plasminogen activator (rtPA) and neuroprotectant (ZL006e) for ischemic stroke treatment. The tP-NP-rtPA/ZL006e consists of a ZL006e-loaded dextran derivative polymeric nanoparticle core and platelet membrane shell conjugated with thrombin-cleavable Tat-peptide-coupled rtPA. Mediated by the cloak of the platelet membrane, tP-NP-rtPA/ZL006e targets the thrombus site and rtPA is triggered to release by the upregulated thrombin. Subsequently, the in situ exposed Tat peptide enhanced penetration of the "nanoplatelet" across the blood-brain barrier into ischemic brain for ZL006e site-specific delivery. From the in vitro and in vivo evaluation, tP-NP-rtPA/ZL006e is demonstrated to significantly enhance the anti-ischemic stroke efficacy in the rat modelwithmiddle cerebral artery occlusion, showing a 63 and 72% decrease in ischemic area and reactive oxygen species level compared to that with free drug combination, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.