Abstract

A sequence (z 0,z 1,z 2,, ...,z n, z n+1) of points fromp=z 0 toq=z n+1 in a metric spaceX is said to besequentially equidistant ifd(z i−1,z i)=d(z i,z i+1) for 1≦i≦n. If there is path inX fromp toq (or if a certain weaker condition holds), then such a sequence exists, with all points distinct, for every choice ofn, while ifX is compact and connected, then such a sequence exists at least forn=2. An example is given of a dense connected subspaceS ofR m ,m≧2, and an uncountable dense subsetE disjoint fromS for which there is no sequentially equidistant sequence of distinct points (n ≧ 2) inS ∪E between any two points ofE. Techniques of dimension theory are utilized in the construction of these examples, as well as in the proofs of some of the positive results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.