Abstract

An atom-economical sequential-flow synthesis of donepezil, a widely prescribed drug for Alzheimer's disease, was accomplished using inexpensive, commercially available precursors. This achievement was made possible by reconfiguring the synthetic route to include only heterogeneous catalytic addition and condensation reactions, with a particular emphasis on skeletal transformation and bond formation through hydrogenation processes. Notably, water was the sole byproduct in this synthesis. A crucial aspect of this work was the development of appropriate continuous-flow processes to achieve a one-flow synthesis. This was accomplished by implementing in-line treatments of the main reaction stream to eliminate inhibitory factors that could affect catalyst performance in the hydrogenation steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.