Abstract

The preparation of microporous and mesoporous metal oxide materials continues to attract considerable attention, because of their possible use in chemical separations, catalyst support, chemical sensors, optical and electronic devices, energy storage, and solar cells. While many methods are known for the synthesis of porous materials, researchers continue to seek new methods to control pore size distribution and macroscale morphology. In this work, we show that sequential vapor infiltration (SVI) can yield shape-controlled micro/mesoporous materials with tunable pore size, using polyesters as a sacrificial template. The reaction proceeds by exposing polymer fiber templates to a controlled sequence of metal organic and co-reactant vapor exposure cycles in an atomic layer deposition (ALD) reactor. The precursors infuse sequentially and thereby distribute and react uniformly within the polymer, to yield an organic–inorganic hybrid material that retains the physical dimensions of the original polymer template. Subsequent calcination in air results in an inorganic microporous/mesoporous material that again retains the macroscopic physical shape of the starting polymer matrix. The microporous/mesoporous structure is confirmed by microscopy and nitrogen adsorption/desorption analysis, and the resulting pore size is controlled by the size of the starting polymer repeat unit and by the kinetics of the infiltration/annealing process steps. In situ infrared transmission and quartz crystal microbalance results confirm the chemical reaction mechanisms. The chemical transformation that occurs during SVI could be important for a range of applications that utilize well-defined porous nanostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.