Abstract

The sequential UV–biological degradation of a mixture of 4-chlorophenol (CP), 2,4-dichlorophenol (DCP), 2,4,6-trichlorophenol (TCP), and pentachlorophenol (PCP) was first tested with each pollutant supplied at an initial concentration of 50 mg l −1. Under these conditions, the chlorophenols were photodegraded in the following order of removal rate: PCP > TCP > DCP > CP with only CP and DCP remaining after 40 h of irradiation. The remaining CP (41 mg l −1) and DCP (13 mg l −1) were then completely removed by biological treatment with an activated sludge mixed culture. Biodegradation did not occur in similar tests conducted with a non-irradiated mixture due to the high microbial toxicity of the solution. UV treatment lead to a significant reduction of the phytotoxicity to Lipedium sativum but no further reduction of phytotoxicity was observed after biological treatment. Evidence was found that the pollutants were partially photodegraded into toxic and non-biodegradable products. When the pollutants were tested individually (initial concentration of 50 mg l −1), PCP, TCP, DCP, 4-CP were photodegraded according to first order kinetic model ( r 2 > 99) with half-lives of 2.2, 3.3, 5.7, and 54 h, respectively. The photoproducts were subsequently biodegraded. This study illustrates the potential of UV as pre-treatment for biological treatment in order to remove toxicity and enhance the biodegradability of organic contaminants. However, it also shows that UV treatment must be carefully optimized to avoid the formation of toxic and/or recalcitrant photoproducts and results from studies conducted on single contaminants cannot be extrapolated to mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.