Abstract

We have constructed a chimeric mitochondrial precursor protein consisting of a mutant bovine pancreatic trypsin inhibitor coupled to the C terminus of a purified artificial precursor protein. This construct fails to complete its import into isolated mitochondria and becomes stuck across sites of close contact between the two mitochondrial membranes. When the mitochondria are then depleted of ATP and the intramolecular disulfide bridges of the trypsin inhibitor are cleaved by dithiothreitol, the trypsin inhibitor moiety is transported across the outer membrane into the intermembrane space. This translocation intermediate can be chased across the inner membrane by restoring the ATP levels in the matrix. These results show that translocation of pancreatic trypsin inhibitor across a biological membrane is prevented by its intramolecular disulfide bridges, that import into the matrix involves two distinct translocation system operating in tandem, and that ATP is required for protein translocation across the inner but not the outer membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.