Abstract
The machining of complex parts typically involves a logical and chronological sequence of n operations on m machine tools. Because manufacturing datums cannot always match design datums, some of the design specifications imposed on the part are usually satisfied by distinct subsets of the n operations prescribed in the process plan. Conventional tolerance control specifies a fixed set point for each operation and permissible variation about this set point to insure compliance with the specifications. This approach is inadequate for complex, low volume, highvalue added parts such as those found in the aircraft, nuclear, or precision instrument manufacturing industry. This paper introduces the concept of Sequential Tolerance Control, an approach that uses real-time measurement information at the completion of stage j to exploit available space inside a dynamic feasible zone and reposition the set point for operations j + 1 to n. The procedure is repeated at appropriate locations along the n operations so as to optimize the production of an acceptable part.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.