Abstract

A general parametric nonlinear mathematical programming problem with an operator equality constraint and a finite number of functional inequality constraints is considered in a Hilbert space. Elements of a minimizing sequence for this problem are formally constructed from elements of minimizing sequences for its augmented Lagrangian with values of dual variables chosen by applying the Tikhonov stabilization method in the course of solving the corresponding modified dual problem. A sequential Kuhn-Tucker theorem in nondifferential form is proved in terms of minimizing sequences and augmented Lagrangians. The theorem is stable with respect to errors in the initial data and provides a necessary and sufficient condition on the elements of a minimizing sequence. It is shown that the structure of the augmented Lagrangian is a direct consequence of the generalized differentiability properties of the value function in the problem. The proof is based on a “nonlinear” version of the dual regularization method, which is substantiated in this paper. An example is given illustrating that the formal construction of a minimizing sequence is unstable without regularizing the solution of the modified dual problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.