Abstract
Unsupervised classification is a crucial step in remote sensing hyperspectral image analysis where producing labeled data is a laborious task. Spectral Clustering is an appealing graph-partitioning technique with outstanding performance on data with non-linear dependencies. However, Spectral Clustering is restricted to small-scale data and neither has been effectively applied to hyperspectral image analysis. In this paper, the unsupervised classification of hyperspectral images is addressed through a sequential spectral clustering that can be extended to the large-scale hyperspectral image. To this end, this paper utilizes a bipartite graph representation along with a sequential singular value decomposition and mini-batch K-means for unsupervised classification of hyperspectral imagery. We evaluate the proposed algorithm with several benchmark hyperspectral datasets including Botswana, Salinas, Indian Pines, Pavia Center Scene and Pavia University Scene. The experimental results show significant improvements made by the proposed algorithm compared to the state-of-art clustering algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.